Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Resist Infect Control ; 13(1): 13, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38281974

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is a growing global health threat that contributes to substantial neonatal mortality. Bangladesh has reported some of the highest rates of AMR among bacteria causing neonatal sepsis. As AMR colonization among newborns can predispose to infection with these bacteria, we aimed to characterize the frequency of and risk factors for colonization of mothers and newborns during hospitalization for delivery. METHODS: We enrolled pregnant women presenting for delivery to a tertiary care hospital in Faridpur, Bangladesh. We collected vaginal and rectal swabs from mothers pre- and post-delivery, rectal swabs from newborns, and swabs from the hospital environment. Swabs were plated on agars selective for extended-spectrum-beta-lactamase producing bacteria (ESBL-PB) and carbapenem-resistant bacteria (CRB). We performed logistic regression to determine factors associated with ESBL-PB/CRB colonization. RESULTS: We enrolled 177 women and their newborns during February-October 2020. Prior to delivery, 77% of mothers were colonized with ESBL-PB and 15% with CRB. 79% of women underwent cesarean deliveries (C-section). 98% of women received antibiotics. Following delivery, 98% of mothers and 89% of newborns were colonized with ESBL-PB and 89% of mothers and 72% of newborns with CRB. Of 290 environmental samples, 77% were positive for ESBL-PB and 69% for CRB. Maternal pre-delivery colonization was associated with hospitalization during pregnancy (RR for ESBL-PB 1.24, 95% CI 1.10-1.40; CRB 2.46, 95% CI 1.39-4.37). Maternal post-delivery and newborn colonization were associated with C-section (RR for maternal CRB 1.31, 95% CI 1.08-1.59; newborn ESBL-PB 1.34, 95% CI 1.09-1.64; newborn CRB 1.73, 95% CI 1.20-2.47). CONCLUSIONS: In this study, we observed high rates of colonization with ESBL-PB/CRB among mothers and newborns, with pre-delivery colonization linked to prior healthcare exposure. Our results demonstrate this trend may be driven by intense use of antibiotics, frequent C-sections, and a contaminated hospital environment. These findings highlight that greater attention should be given to the use of perinatal antibiotics, improved surgical stewardship for C-sections, and infection prevention practices in healthcare settings to reduce the high prevalence of colonization with AMR organisms.


Assuntos
Carbapenêmicos , beta-Lactamases , Humanos , Feminino , Recém-Nascido , Gravidez , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Estudos de Coortes , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Hospitais
3.
Braz J Microbiol ; 54(2): 803-815, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36905487

RESUMO

Humans frequently contract urinary tract infections (UTIs), which can be brought on by uropathogens (UPs) that are multi-drug resistant. Treatment for UTIs brought on by pathogenic UPs that produce extended-spectrum lactamases (ESBLs) is more costly and potentially fatal. As a result, the objective of this study was to use culture, biochemical, and 16S rRNA sequencing to identify and characterize UPs isolated from outpatients in Noakhali, Bangladesh, who had symptoms of UTIs. ESBL gene identification and quinolone resistance gene typing were then performed on the isolates using polymerase chain reaction (PCR). Throughout the trial's 8-month duration, 152 (76%) of 200 urine samples were positive for the presence of UPs. The overall number of UPs recovered was 210, with 39 individuals having multiple UPs present in their samples. Among all of the isolates, Escherichia coli (45.24%, 95/210; 95% confidence interval (CI): 35.15-57.60%), Enterobacter spp. (24.76%, 52/210; CI: 19.15-35.77%), Klebsiella spp. (20.95%; 44/210; CI: 15.15-30.20%), and Providencia spp. (9.05%; 19/210; CI: 4.95-19.25%) were the four most prevalent bacteria found in the isolates. The UPs displayed a very high level of resistance to piperacillin 96.92% (126/130), ampicillin 90% (117/130), nalidixic acid 77.69% (101/130), cefazolin 70% (91/130), amoxicillin 50% (55/130), cefazolin 42.31% (55/130), nitrofurantoin 43.08% (56/130), and ciprofloxacin 33.08% (43/130), whereas resistance to netilmicin (3.85%), amikacin (4.62%), and imipenem (9.23%) was low. Individually, every species of E. coli and Providencia spp. showed greater ampicillin, amikacin, cefazolin, cefazolin, and nalidixic acid resistance than the others. The bivariate results indicate several antibiotic pairings, and isolates had meaningful associations. All MDR isolates were subjected to PCR, which revealed that blaCTX-M-15 genes predominated among the isolates, followed by the blaTEM class (37%). Isolates also had the qnrS, aac-6´-Ib-cr, and gyrA genes. The findings provide worrying indications of a major expansion of MDR isolates in the study locations, particularly the epidemiological balCTX-M 15, with the potential for the transmission of multi-drug-resistant UP strains in the population.


Assuntos
Infecções por Escherichia coli , Quinolonas , Infecções Urinárias , Humanos , Escherichia coli , Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia , Quinolonas/farmacologia , Cefazolina , Amicacina , Ácido Nalidíxico , Bangladesh/epidemiologia , RNA Ribossômico 16S/genética , Farmacorresistência Bacteriana Múltipla/genética , beta-Lactamases/genética , Farmacorresistência Bacteriana , Infecções Urinárias/microbiologia , Ampicilina , Testes de Sensibilidade Microbiana
4.
PLoS Pathog ; 18(12): e1010952, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36480516

RESUMO

Antibiotic resistance is a leading cause of hospitalization and death worldwide. Heavy metals such as arsenic have been shown to drive co-selection of antibiotic resistance, suggesting arsenic-contaminated drinking water is a risk factor for antibiotic resistance carriage. This study aimed to determine the prevalence and abundance of antibiotic-resistant Escherichia coli (AR-Ec) among people and drinking water in high (Hajiganj, >100 µg/L) and low arsenic-contaminated (Matlab, <20 µg/L) areas in Bangladesh. Drinking water and stool from mothers and their children (<1 year) were collected from 50 households per area. AR-Ec was detected via selective culture plating and isolates were tested for antibiotic resistance, arsenic resistance, and diarrheagenic genes by PCR. Whole-genome sequencing (WGS) analysis was done for 30 E. coli isolates from 10 households. Prevalence of AR-Ec was significantly higher in water in Hajiganj (48%) compared to water in Matlab (22%, p <0.05) and among children in Hajiganj (94%) compared to children in Matlab (76%, p <0.05), but not among mothers. A significantly higher proportion of E. coli isolates from Hajiganj were multidrug-resistant (83%) compared to isolates from Matlab (71%, p <0.05). Co-resistance to arsenic and multiple antibiotics (MAR index >0.2) was observed in a higher proportion of water (78%) and child stool (100%) isolates in Hajiganj than in water (57%) and children (89%) in Matlab (p <0.05). The odds of arsenic-resistant bacteria being resistant to third-generation cephalosporin antibiotics were higher compared to arsenic-sensitive bacteria (odds ratios, OR 1.2-7.0, p <0.01). WGS-based phylogenetic analysis of E. coli isolates did not reveal any clustering based on arsenic exposure and no significant difference in resistome was found among the isolates between the two areas. The positive association detected between arsenic exposure and antibiotic resistance carriage among children in arsenic-affected areas in Bangladesh is an important public health concern that warrants redoubling efforts to reduce arsenic exposure.


Assuntos
Arsênio , Água Potável , Criança , Humanos , Escherichia coli/genética , Antibacterianos/farmacologia , Arsênio/farmacologia , Filogenia
5.
Front Microbiol ; 13: 803043, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432268

RESUMO

The prevalence of fecal colonization with extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-Ec) among children in low- and middle-income countries is alarmingly high. This study aimed to identify the sources of ESBL-Ec colonization in children < 1 year old through comparative analysis of E. coli isolates from child stool, child's mother stool, and point-of-use drinking water from 46 rural households in Bangladesh. The pairwise similarity in antibiotic susceptibility of E. coli from all three sources was evaluated, followed by phylogenetic clustering using enterobacterial repetitive intergenic consensus polymerase chain reaction and whole-genome sequence analysis of the isolates. Matching antibiotic susceptibility and enterobacterial repetitive intergenic consensus polymerase chain reaction patterns were found among ESBL-Ec isolates from child-mother dyads of 24 and 11 households, respectively, from child-water dyads of 5 and 4 households, respectively, and from child-mother-water triads of 3 and 4 households, respectively. Whole-genome sequence analysis of 30 isolates from 10 households revealed that ESBL-Ec from children in five households (50%) was clonally related to ESBL-Ec either from their mothers (2 households), drinking water sources (2 households), or both mother and drinking-water sources (1 household) based on serotype, phylogroup, sequence type, antibiotic resistance genes, mobile genetic elements, core single-nucleotide polymorphisms, and whole-genome multilocus sequence typing. Overall, this study provides empirical evidence that ESBL-Ec colonization in children is linked to the colonization status of mothers and exposure to the household environments contaminated with ESBL-Ec. Interventions such as improved hygiene practices and a safe drinking water supply may help reduce the transmission of ESBL-Ec at the household level.

6.
PLoS One ; 16(12): e0261970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34965260

RESUMO

Fluro(quinolones) is an important class of antibiotic used widely in both human and veterinary medicine. Resistance to fluro(quinolones) can be acquired by either chromosomal point mutations or plasmid-mediated quinolone resistance (PMQR). There is a lack of studies on the prevalence of PMQR in organisms from environmental sources in Bangladesh. In this study, we investigated the occurrence of PMQR genes in E. coli from various water sources and analysed associations between multi-drug resistance (MDR) and resistance to extended spectrum ß-lactam antibiotics. We analysed 300 E. coli isolates from wastewaters of urban live-bird markets (n = 74) and rural households (n = 80), rural ponds (n = 71) and river water samples (n = 75) during 2017-2018. We isolated E. coli by filtering 100 ml of water samples through a 0.2µm cellulose membrane and incubating on mTEC agar media followed by identification of isolated colonies using biochemical tests. We selected one isolate per sample for detection of PMQR genes by multiplex PCR and tested for antibiotic susceptibility by disc diffusion. Clonal relatedness of PMQR-positive isolates was evaluated by enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). About 66% (n = 199) of E. coli isolates harbored PMQR-genes, predominantly qnrS (82%, n = 164) followed by aac(6')-lb-cr (9%, n = 17), oqxAB (7%, n = 13), qnrB (6%, n = 11) and qepA (4%, n = 8). Around 68% (n = 135) of PMQR-positive isolates were MDR and 92% (n = 183) were extended spectrum ß-lactamase (ESBL)-producing of which the proportion of positive samples was 87% (n = 159) for blaCTX-M-1' 34% (n = 62) for blaTEM, 9% (n = 16) for blaOXA-1, blaOXA-47 and blaCMY-2, and 2% (n = 4) for blaSHV. Further, 16% (n = 32) of PMQR-positive isolates were resistant to carbapenems of which 20 isolates carried blaNDM-1. Class 1 integron (int1) was found in 36% (n = 72) of PMQR-positive E. coli isolates. PMQR genes were significantly associated with ESBL phenotypes (p≤0.001). The presence of several PMQR genes were positively associated with ESBL and carbapenemase encoding genes such as qnrS with blaCTXM-1 (p<0.001), qnrB with blaTEM (p<0.001) and blaOXA-1 (p = 0.005), oqxAB and aac(6')-lb-cr with blaSHV and blaOXA-1 (p<0.001), qnrB with blaNDM-1 (p<0.001), aac(6')-lb-cr with blaOXA-47 (p<0.001) and blaNDM-1 (p = 0.002). Further, int1 was found to correlate with qnrB (p<0.001) and qepA (p = 0.011). ERIC-PCR profiles allowed identification of 84 of 199 isolates with 85% matching profiles which were further grouped into 33 clusters. Only 5 clusters had isolates (n = 11) with identical ERIC-PCR profiles suggesting that PMQR-positive E. coli isolates are genetically heterogeneous. Overall, PMQR-positive MDR E. coli were widely distributed in aquatic environments of Bangladesh indicating poor wastewater treatment and highlighting the risk of transmission to humans and animals.


Assuntos
Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Quinolonas/farmacologia , Águas Residuárias/microbiologia , Animais , Bangladesh/epidemiologia , Humanos , Prevalência
7.
JMIR Res Protoc ; 8(12): e14574, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31855188

RESUMO

BACKGROUND: Antimicrobial resistance is a widespread, alarming issue in global health and a significant contributor to human death and illness, especially in low and middle-income countries like Bangladesh. Despite extensive work conducted in environmental settings, there is a scarcity of knowledge about the presence of resistant organisms in the air. OBJECTIVE: The objective of this protocol is to quantify and characterize the airborne resistomes in Bangladesh, which will be a guide to identify high-risk environments for multidrug-resistant pathogens with their spatiotemporal diversity. METHODS: This is a cross-sectional study with an environmental, systematic, and grid sampling strategy focused on collecting air samples from different outdoor environments during the dry and wet seasons. The four environmental compartments are the frequent human exposure sites in both urban and rural settings: urban residential areas (n=20), live bird markets (n=20), rural households (n=20), and poultry farms (n=20). We obtained air samples from 80 locations in two seasons by using an active microbial air sampler. From each location, five air samples were collected in different media to yield the total bacterial count of 3rd generation cephalosporin (3GC) resistant Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, vancomycin-resistant Enterococci and methicillin-resistant Staphylococcus aureus. RESULTS: The study started in January 2018, and the collection of air samples was completed in November 2018. We have received 800 air samples from 80 study locations in both dry and wet seasons. Currently, the laboratory analysis is ongoing, and we expect to receive the preliminary results by October 2019. We will publish the complete result as soon as we clean and analyze the data and draft the manuscript. CONCLUSIONS: The existence of resistant bacteria in the air like those producing extended-spectrum beta-lactamases, carbapenem-resistant Enterobacteriaceae, vancomycin-resistant Enterococci, and methicillin-resistant Staphylococcus aureus will justify our hypothesis that the outdoor environment (air) in Bangladesh acts as a reservoir for bacteria that carry genes conferring resistance to antibiotics. To our knowledge, this is the first study to explore the presence of superbugs in the air in commonly exposed areas in Bangladesh. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/14574.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...